pharmaceutics

pubs.acs.org/molecularpharmaceutics

In Silico Prediction of Aqueous Solubility: A Multimodel Protocol

Based on Chemical Similarity

Florent Chevillard,"”* David Lagorce,T Christelle Reynés,T’§ Bruno O. Villoutreix," Philippe Vayer,*’”

and Maria A. Miteva®"

TUniversité Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques in silico, Inserm UMR-S 973, 35 rue Helene Brion, 75013

Paris, France

*Institute of Pharmaceutical Chemistry, Phillips University Marburg, Marbacher Weg 6-10, 35037 Marburg, Germany
SLab. Physique Industrielle et Traitement de 'Information EA 2415, UFR Pharmacie - Univ. Montpellier 1, 15 avenue Charles

Flahault - BP 14491, 34093 Montpellier Cedex S, France

IBioInformatic Modelling Department, Technologie Servier, 45007 Orléans cedex1, France

© Supporting Information

ABSTRACT: Aqueous solubility is one of the most important
ADMET properties to assess and to optimize during the drug
discovery process. At present, accurate prediction of solubility
remains very challenging and there is an important need of
independent benchmarking of the existing in silico models
such as to suggest solutions for their improvement. In this
study, we developed a new protocol for improved solubility
prediction by combining several existing models available in
commercial or free software packages. We first performed an
evaluation of ten in silico models for aqueous solubility
prediction on several data sets in order to assess the reliability
of the methods, and we proposed a new diverse data set of 150
molecules as relevant test set, SolDiv150. We developed a
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random forest protocol to evaluate the performance of different fingerprints for aqueous solubility prediction based on molecular
structure similarity. Our protocol, called a “multimodel protocol”, allows selecting the most accurate model for a compound of
interest among the employed models or software packages, achieving r* of 0.84 when applied to SolDiv150. We also found that
all models assessed here performed better on druglike molecules than on real drugs, thus additional improvement is needed in
this direction. Overall, our approach enlarges the applicability domain as demonstrated by the more accurate results for solubility
prediction obtained using our protocol in comparison to using individual models.

KEYWORDS: solubility prediction, chemical structure similarity, QSPR models, multimodel optimization

Bl INTRODUCTION

Aqueous solubility is one of the most important ADMET
(absorption, distribution, metabolism, excretion and toxicity)
properties to be optimized during the drug discovery process."”
Poor solubility has been identified as the cause of many drug
development failures,® and improving the aqueous solubility of
bioactive molecules is a major issue in medicinal chemistry.'~*
The rate of dissolution and permeability of drugs® strongly
depend on its solubility. In addition, high concentrations of
poorly soluble drugs in the human body may result in
crystallization and toxicity. Recently, it has been found that
real drugs are much more soluble’ than those druglike
molecules in the ZINC database passing Lipinski’s rule of
five.! Considering the critical role of solubility, its evaluation is
crucial in all drug discovery projects. However, measuring
experimentally the solubility for thousands and millions of
molecules used in high throughput screening (HTS) is
unrealistic® and impossible for millions of virtual molecules
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not yet synthesized but of potential interest. Therefore,
prediction of solubility by in silico approaches would be highly
valuable as it will assist the design and the prioritization of small
molecules during the first steps of the drug discovery process
but should also be beneficial to other commercially important
compounds such as agrochemicals.

The thermodynamic solubility, denoted as S in moles per
liter, is the maximum amount of the most stable crystal form of
a compound that can remain in solution under thermodynamic
equilibrium between the solid and dissolved state at a given
temperature.” Considering the un-ionized form of the molecule,
the thermodynamic solubility is stated as intrinsic solubility.
Generally, thermodynamic solubility tends to be lower than
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kinetic solubility, the latter depending on the compound crystal
form or polyforms. The kinetic solubility is typically measured
in a stock solution of the compound in dimethyl sulfoxide
(DMSO), from which a sequential dilution is done in water.”
Allowing sufficient time, the final form will be the most stable
crystal form, and the solubility will approach the true
thermodynamic solubility. The in silico predictions address
mainly the thermodynamic solubility.

Accurate prediction of the solubility is a tremendous
challenge for a large number of compounds since intermo-
lecular adhesive interactions between solute—solute, solute—
solvent, and solvent—solvent molecules involved in the
dissolution process should be evaluated (those could be
predicted by the first principle methods).” Thus, many different
in silico approximations have been developed aiming at fast
and, in some cases, accurate estimation of aqueous solubility of
chemicals.*™"* Historically, the first models were based on
experimentally measured boiling/melting points, pK, and the
octanol—water partition coefficient (logP) values of the
compounds. The classic way was indeed to combine the
melting point with logP of the un-ionized molecule using the
general solubility equation (GSE)."*™"® This technique cannot
be applied to salt or lyophilized forms. Given that such
experimental data are available for a limited number of
compounds, other approaches are being developed, e.g., by
using predicted logP.” Today the most commonly used
methods are based on quantitative structure property relation-
ship (QSPR) models allowing to correlate the aqueous
solubility with various molecular descriptors (physicochemical,
topological, 2D or 3D) using mathematical models.>"*~>!
Recent analyses stressed that sometimes the relationship
between computed descriptors and the solubility is not
straightforward®” and that the applicability domain has to be
considered.” Further, QSPR models need a high quality of
experimentally measured solubility for the training sets, while it
should be borne in mind that it has been estimated that the
average error on the experimental values of aqueous solubility is
probably more than 0.6 log unit for organic compounds.”*
Altogether, the availability of proper experimental solubility
data, the applicability domain, as well as imperfections of the
employed in silico techniques, demonstrate the need of
independent benchmarking of the existing models and their
improvement. Along these lines, a competition for accurate
prediction of intrinsic solubility of 32 diverse druglike
molecules with uniformly measured data, as in the proposed
training set of 100 compounds, has recently been organized,
“the Solubility Challenge”.*~"°

In this work, we developed a protocol that should improve in
silico solubility prediction. First, we performed an evaluation of
ten in silico models for aqueous solubility prediction on several
data sets in order to assess the reliability of the methods. Then,
we developed a random forest protocol with the goal to
evaluate the performance of different fingerprints for the
aqueous solubility prediction based on molecular structure
similarity. Finally, we suggested and validated a new protocol,
called a “multimodel protocol”, combining several existing
models available in commercial or free software, which allowed
finding and selecting the most accurate model for a compound
of interest among all the available models or software packages.

B EXPERIMENTAL SECTION

Data Sets’ Preparation. Four different data sets with
available experimental values of intrinsic solubility (expressed in

molar units mol/L'®) were selected for solubility models’
evaluation. We used FAF-Drugs2®® to remove duplicate
molecules (using canonical smiles), salts and inorganic
compounds. We performed also filtering with FAF-Drugs2
for some physicochemical properties since solubility models
have often been trained on druglike molecules®*® (MW < 500,
hydrogen bond donors (HBD) < S, hydrogen bond acceptors
(HBA) < 10, number of heavy atoms < 37, —4 < logP < S,
rotatables bonds < 1S5; toxic/reactive groups were not
removed). The Standardize protocol in Pipeline Pilot (www.
accelrys.com/products/pipeline-pilot) with the parameter
NeutralizeBondedZwitterion was used for the neutralization of
molecules since the models assessed here predict intrinsic
solubility that requires the neutral form of molecules.” In
addition, the solubility software (except Pipeline) assessed here
employ an internal standardization of the compounds. For the
QikProp and VolSurf+ models using 3D descriptors, the 3D
structures of the compounds were generated with Corina 3.4
(http://www.molecular-networks.com/products/corina). Only
the lowest energy conformation among the 20 generated ones
was kept for each molecule. In order to have different
molecules in each data set the duplicates were removed as
explained below.

Solubility Challenge Test Set. The Solubility Challenge data
set is divided into two parts: Solubility Challenge training set of
100 compounds and Solubility Challenge test set of 32
compounds recently published.* '® The main strength of this
data set is that it contains very diverse compounds with uniform
experimental data of solubility. The intrinsic solubility was
calculated using the CheqSol approach.”” Among the 32
compounds, six were removed because reliable experimental
values were not available. This procedure yielded 26
compounds.

PhysProp. 6152 compounds were extracted from the
commercial PhysProp data set.”® After applying the FAF-
Drugs2 protocol (explained above) and removing duplicates
with the Solubility Challenge test set, the number of
compounds was reduced to 3970.

Solubility Challenge Training Set. The Solubility Challenge
training set was prepared in the same way that the Solubility
Challenge test set, but the duplicates with the PhysProp data
set were removed, reducing the number of compounds to 71.

Huuskonen. This data set has been selected from the two
commercial databases AQUASOL'**® and PhysProp,”® and has
been used as training set for creation of many models.*>*" After
applying the FAF-Drugs2 protocol and removing duplicates
with all the other data sets, the number was decreased to 830.

Keys To Select the Most Appropriate Solubility
Model. To determine the best fingerprint for the solubility
prediction, we created models based on different molecular
fingerprints using a nonparametric regression method for
aqueous solubility prediction.

Random Forest Algorithm (RF). For the regression method,
the Random Forest algorithm® was chosen. The method is
based on an ensemble of decision trees, from which the
prediction of a continuous variable, in this case the aqueous
solubility, is obtained as the average of the predicted values of
all trees. Each tree is an unpruned usual regression tree built on
a subset of features and observations. Indeed, as the regression
tree is a deterministic method, in order to obtain different trees,
perturbations are added to each tree by performing a double
randomization on features and observations. Random Forests
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were trained using the randomForest library in the statistical
computing environment R

Optimization of the Parameters for RF. Several statistical
parameters can be tuned in order to improve the learning in a
Random Forest algorithm. In this study, the most two
influential parameters were optimized: ntree, which is the
number of trees used to compute the final average predicted
value, and mtry, which is the number of variables randomly
chosen to build each individual tree. Scripts from R*® were
used, and both parameters were simultaneously optimized by
using a grid search. The following ranges were proceeded: ntree,
from 100 to 1000 by steps of 100, and mtry, from 20 to 200 by
steps of 10. Both parameters, ntree and mtry, were optimized for
each tested fingerprint independently.

Quality Measures. Criteria To Evaluate Solubility Models.
To compare the performance of the solubility prediction
models (solubility unit used is log(mol/L)) four criteria were
used:

7%, the squared regression coefficient for the correlation
between experimental and predicted values;

P1, the ratio of molecules with a predicted error within
0.5 log (mol/L);

P2, the ratio of molecules with a predicted error within 1
log (mol/L);

RMSE, the root mean squared error.

Molecular similarity Evaluation. Molecular similarity used
for the multimodel protocol was evaluated using the MACCS
key fingerprints. These fingerprints were developed for
substructure searching or for entire structure comparison.”*
They code the presence or absence of 166 molecular
substructures. As a measure of similarity between two
structures, the Tanimoto coefficient was applied, defined by

similarity = N
Ny + Np = Nynp

where N, and Nj are the numbers of bits in bitstrings A and B,
respectively, and N is the number of bits which are common
between the two bitstrings A and B. The measure of similarity
is between 0.0 and 1.0, where 1.0 indicates strict equivalence of
the bitstrings. Using the MACCS keys, a similarity of 1.0
usually means that the structures are identical (or at least very
closely related) apart from stereochemistry, which is not taken
into account by the keys.

Mean Absolute Error. In the multimodel protocol, the mean
absolute error (MAE) for a target compound A was estimated
using the absolute prediction errors of three compounds B, C
and D (eB, eC and eD) with known experimentally measured
solubility, which are structurally similar to compound A, using
the following equation:

leBl + leCl + leDI
3

MAE =

B RESULTS AND DISCUSSION

Chemical Space of Data Sets Used for Solubility
Model Evaluation. An important criterion for this study was
the chemical diversity of the data sets. Our study is based on
four data sets filtered for physicochemical properties important
for druglikeness (for details see Experimental Section):
Huuskonen® (number of compounds = 830), PhysProp
(www.srcinc.com) (number of compounds = 3970), and the
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|
w

PCA_PC1

Figure 1. The first two PC scores for all data sets: The dots represent
the Huuskonen data set (in green), the PhysProp (in orange), the
Solubility Challenge training set (in red) and the Solubility Challenge
test set (in blue).
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Figure 2. Representation of the 150 centroids selected for the test set
SolDiv150 in the chemical space according to the two first PC scores.
Blue dots represent the centroids; the orange dots represent the
PhysProp data set.

Solubility Challenge test (number of compounds = 26) and
training sets (number of compounds = 71).57"°

In order to analyze the data sets’ chemical space, we used a
principal component analysis (PCA) learned on all compounds
from the four data sets (4897 compounds) using the Learn
Molecular PCA model available in Pipeline Pilot (www.accelrys.
com). Nine properties of the compounds (molecular weight,
logP, HBD, HBA, numbers of aromatic rings, rings, rotatable
bonds, atoms and fragments) which are critical for solubility
prediction®?®** were used to compute the principal compo-
nents (PC). The first two PC scores (with percentage of the
variance S1 and 12) which explain best the global variability of
the data (63%) were selected to be presented here. In this
context, the compounds of each data set were then projected
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Figure 3. Molecular structures of the SolDiv150 data set with the experimental values of solubility taken from PhysProp. Ten molecules with an
absolute error >2.0 log unit for the solubility logS as predicted by ISIDA are highlighted by red lines.

together onto this subspace in order to study their diversity
(Figure 1).

In addition to the above-mentioned data sets, another diverse
test set was prepared for solubility evaluation, called SolDiv150,
that can also be useful for other benchmark studies. This data
set contains 150 compounds from the PhysProp data set
selected by clustering. The 150 centroids selected for the
SolDiv150 set are shown in Figure 2, and their structures are
given in Figure 3. These compounds were chosen because they
represent the chemical space of PhysProp as illustrated in
Figure 2, and as centroids of the obtained diverse clusters. The
clustering protocol was performed with the MACCS key
fingerprints (see Experimental Section for details) in Pipeline
Pilot using a maximum distance of 0.3 (the Tanimoto
coefficient) within the clusters. The centroid of each cluster
was taken for the test set, if the cluster contained at least 4
compounds. As seen from Figure 3 the clustering approach

allowed the selection of compounds from different chemical
series.

Comparison of Existing Solubility Models. Ten QSPR
models using 2D or 3D descriptors from commercial software
or freeware available online were selected for evaluation (Table
1). QSPR models do not need any experimental data for the
compound of interest but only the chemical structure of the
compounds to predict its property (here solubility). However,
the application of such a model is limited to the chemical space
spanned by the compounds used to train the model, i.e., the
applicability domain. QSPR models can be based on fragment-
based approaches estimating the solubility by summing up the
contribution of different fragments.7‘3l’36’37 Yet, distinguishing
isomers and/or missing fragments can be a problem for such
methods.”> Another type of model is based on molecular
properties’” similarity and requires various descriptor computa-
tions. All tools assessed here predict the intrinsic solubility and
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Table 1. List of the Models Used in the Benchmark

models
Pipeline Pilot v.7.5:
solubility*

Pipeline Pilot v.7.5:
ADMET-solubility

MOE v.2010.10%"%

descriptors

electrotopological
indices

atomic, topological

fragments: 76 atom

types

modeling method

artificial neural network

genetic algorithm, multiple
linear regression

fragment-based, multiple
linear regression

ACD lab v.12.0*° atomic experiment-based
combined with QSPR

QikProp v.3.4* 2D and 3D experiment-based
combined with QSPR

ADMET Predictor v.6*'  atomic 3 components partial least
squares

volsurf+ 1.0.6"* 3D QSPR combined with 3D

descriptors
FAF -DrugsZzs‘35

ALOGpS v.2.1* — VCC electrotopological
lab indices

ISIDA*

atomic, topological ~ multiple linear regression

artificial neural network

fragments QSPR, clustering

provide values in molar units (mol/L). The results obtained
independently on the S different data sets are shown for each
data set in Table 2.

According to the results, it is important to underline the fact
that there is no model that truly outperforms the others. For
instance, ACD, ADMET Predictor and VCC lab perform well
on the PhysProp data set, but perform poorly on the Solubility
Challenge sets. Similarly, the two PP models and FAF do not
perform satisfactory on both Solubility Challenge sets. In fact,
most of the software do not perform very well on the Solubility
Challenge test set, stressing that the current models will have to
be improved. If we focus on the SolDiv150 set, we note that the
solubility values were poorly predicted by ISIDA (P1 = 0.33).
The worst predictions for ISIDA with an absolute error for logS
> 2.0 were obtained for 10 molecules underlined in red in
Figure 3. In this case, all compounds were predicted to be more
soluble than the experimental data. We can distinguish 3
common fragments for these molecules shown in Figure 4 that
may have been insufficiently represented when the model was
trained. Another reason for the first two fragments could be
planarity that may not be sufficiently taken into consideration
in the model, since usually the planarity of the molecules can
lead to a decreased solubility.*

Opverall, only the results on the Huuskonen’s data set are
satisfactory for all models, possibly because many models were
trained on these data. This observation outlines the difficulty to
test models with public data because often the test sets contain
compounds similar to those of the training sets and the need to
develop new freely available and clean, experimentally
measured, solubility data sets for benchmarking.

Since the performance of the assessed models significantly
varies depending on the test sets used, we decided to combine
all models in an attempt to improve the accuracy of the
prediction. A combination of these models could increase the
effectiveness of the prediction for new compounds by enlarging
the applicability domain due to the different training sets used
initially to develop the different models

Multimodel Protocol. The above presented analysis
further demonstrates the need of finding ways for improving
the accuracy of the prediction. To this end we developed a new
protocol based on molecular structure similarity search and
employing widely used solubility prediction models as
implemented in free or commercial software. Similarity search

Table 2. Performance of the Solubility Prediction for All the Software on the Five Data Sets, According to Four Criteria: ?, RMSE, Ratios of Correct Prediction P1 and P2

solubility challenge

SolDiv150

test

training

PhysProp

Huuskonen

P2 RMSE
0.73 1.03
0.62 1.36
0.83 0.82
0.79 1.00
0.77 0.89
0.72 0.97
0.90 0.90
0.62 121
0.72 1.04
0.73 1.0
0.64 1.24

P1
0.45
0.39
0.51
0.50
0.49
0.42
0.59
0.39
0.43
0.49
0.33

2
0.60
0.58
0.79
0.62
0.76
0.72
0.73
0.65
0.56
0.74
0.29

RMSE
1.66
1.49
1.14
1.30
1.24
1.12
1.25
1.09
1.19
1.18
1.09

P2
0.42
0.46
0.60
0.58
0.65
0.77
0.65
0.62
0.62
0.69
0.69

P1
0.15
0.35
0.16
0.27
0.31
0.46
0.23
0.31
0.38
0.31
0.54

2
0.29
0.28
0.53
0.44
0.34
0.57
0.32
0.44
0.18
0.39
0.35

RMSE
1.34
1.14
1.13
0.95
1.03
1.11
0.96
0.88
0.87
0.97
0.85

P2
0.55
0.59
0.70
0.73
0.72
0.66
0.79
0.73
0.77
0.70
0.73

;2 P1
0.40 0.32
0.49 027
0.25 0.52
0.38 0.42
0.37 0.46
0.26 035
0.45 0.45
0.52 0.39
0.46 0.58
0.25 0.38
0.39 0.49

RMSE
1.34
1.37
091
1.13
121
1.24
0.96
128
1.18
0.94
1.24

P2
0.64
0.61
0.81
0.72
0.66
0.69
0.81
0.61
0.67
0.79
0.63

P1
0.38
0.36
0.54
0.43
0.40
0.40
0.53
0.33
0.38
0.52
0.36

2
0.40
0.57
0.73
0.53
0.54
0.51
0.64
0.55
0.39
0.68
0.52

RMSE
0.84
0.90
0.61
0.67
0.76
0.86
0.51
0.88
0.97
1.08
0.59

P2
0.79
0.77
091
0.87
0.84
0.80
0.94
0.77
0.71
0.68
0.90

P1
0.49
0.47
0.67
0.56
0.63
0.52
0.78
0.45
0.39
0.39
0.67

2
0.86
0.83
0.92
091
0.88
0.84
9
0.85
0.82
0.79
0.93

models
PP-solubility
PP-ADMET solubility
ADMET PREDICTOR

ACD

MOE
QikProp
QikProp-CI
Volsurf +
FAF

VCC lab
ISIDA
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Figure 4. Three fragments found to be badly predicted by ISIDA.

of compounds has already been exploited for solubility
prediction.'”*® The common idea is to select the model
which achieves the best solubility prediction for the most
similar compounds of the targeted one. Our approach brings
the following additional improvements: an algorithmic
optimization through the implementation of a Random Forest
scheme in order to find the best performing fingerprint for
similarity search used for solubility prediction (see Figure 1S in
the Supporting Information).

Keys To Select the Most Appropriate Model. In order to
choose appropriate fingerprints allowing a satisfactory molec-
ular similarity search, we investigated which fingerprints
represented the best solubility. To address this problem,
several models based on different molecular fingerprints were
created using a nonparametric regression method for aqueous
solubility prediction, a Random Forest algorithm (see in
Experimental Section for details) shown previously to be
suitable for solubility prediction.” The data set used for the
training was the PhysProp data set with the largest number of
compounds. Five fingerprints were compared: MACCS keys,
ECFP and FCFP, both from length of 4 and 6.

The PhysProp data set was split into 7 folds of 500 random
compounds, but the last, 8th fold contained the 457 remaining
compounds. To avoid overfitting and provide a robust model,
which can be applied to new data, an 8-fold cross validation was
performed. This procedure divides the data set into 8

Table 3. Values of the ¥, RMSE and Ratio of Correct
Prediction (P1 and P2) Obtained for Each Fingerprint

ﬁngerprint ECFP_6 ECFP_4 FCFP_6 FCFP_4 MACCS

? 0.55 0.56 0.58 0.59 0.68
P1 0.39 0.40 0.40 0.41 0.48
P2 0.66 0.67 0.70 0.71 0.77
RMSE 1.20 1.18 1.15 1.13 0.99

1. Run all models

2. Compute

absolute error for

each model

3. Compute

MACCS keys

|

‘ Target }:9‘ Reference dataset ———X has3 NN ——
Similarity
search .

No prediction

Selection of the
model with the
lowest MAE

Prediction with the | YES MAE NO
most accurate model [\ <

Figure 6. Schematic description of the multimodel protocol.

subsamples, learns a model using 7 subsamples and tests it
on the remaining set. This iterative procedure is then repeated
until each fold has served as test set. At the end of the process,
the whole sample has been used as test and it is possible to
compute the global model quality quantified by r* This
procedure was repeated for each value of the parameters ntree
and mtry (see Experimental Section), and those final values that

I Training set I
Split Data l
7/8 1/8
Tl Test Random
. 1 Fingerprint ) . N N
e conversion 10010110 e Train Test l 178 214
—> —| 1 1 —
I 1 Models
1 1 All folds
erved as
Train Test l test set
: Quality
Reference Dataset:
PhysProp 8 cross I Test set | of the >
validation model
logSpred = f(logSxp)
logSexp logSpred = .
-.Ol:‘.' » L :“'
n - : ' .

Figure S. Schematic description of the Random Forest algorithm for the selection of the best fingerprint.
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* Correlation
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2 L N
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c 35.':\ 2 e Correlation

R .f):z‘ ° ¢ logSpred/logSexp
4-3‘; ° 4. - Linear ( Correlation
e o logSpred/logSexp)
O 6 R?=0.836

8

Figure 7. Correlation between the predicted and experimental logS.
(A) For the 17 compounds of the Solubility Challenge test set
satisfying the similarity cutoff of 0.7. (B) For the 26 compounds of the
Solubility Challenge test set when using the similarity cutoff of 0.5.
(C) For the 150 compounds of the SolDiv150 data set satisfying the
similarity cutoff of 0.7.

Table 4. Performance of Models on 62 Drugs Extracted from
the PhysProp Data Set, That Have 3 Similar Compounds in
the Reference Set

models P1 P2 RMSE I
PP-solubility 0.59 0.87 0.77 0.53
PP-ADMET solubility 0.43 0.73 0.95 0.51
ACD 0.56 0.84 0.87 0.48
MOE 0.68 0.92 0.51 0.62
QikProp 0.67 0.84 0.86 0.45
QikProp-CI 0.56 0.75 0.88 0.30
ADMET Predictor 0.54 0.86 0.72 0.56
VolSurf + 0.49 0.81 0.88 0.13
FAF 0.46 0.86 0.85 0.39
VCC lab 0.43 0.78 0.75 0.51
ISIDA 0.40 0.76 0.89 0.23
multimodel 0.62 0.90 0.75 0.58

led to the maximal cross-validated 7* were chosen. This
protocol is illustrated in Figure S.

Finally, 5 new models, one for each fingerprint, were trained
using the same 8-fold cross validation techniques with the

optimized parameters. The results of the r*, RMSE and ratio of
correct prediction for each model are presented in Table 3.

According to the results, the MACCS keys are best
fingerprint descriptors among the five tested for aqueous
solubility prediction, and thus we decided to choose MACCS
keys for the selection of most similar compounds in our
multimodel protocol.

Multimodel Protocol Scheme. For a target compound, our
protocol selects the model providing the best solubility
prediction for structurally similar compounds. We used a k =
3 nearest neighbors approach based on a structure similarity
measure. This value was chosen because we obtained the best r*
for k = 3 when varying k from 1 to 6 (tests performed on the
Solubility Challenge test set as containing reliable experimental
data; shown in Figure S2 in Supporting Information). The
three most similar compounds are taken into account according
to the Tanimoto similarity coefficient of 0.7 using the MACCS
keys fingerprints. A schematic description of the algorithm is
given in Figure 6 and Figure 1S in the Supporting Information.
The entire protocol was implemented in Pipeline Pilot. The
PhysProp data set was taken as a reference for the experimental
solubility data. The protocol chooses the model achieving the
minimal mean error MAE for the three reference compounds. If
the best chosen model exhibits a mean error of more than 1 log,
no prediction is proposed. We also explored the possibility to
employ the protocol in case of absence of 3 compounds with
similarity values of 0.7 by decreasing this barrier to 0.5.
However, in such cases, the performance is not satisfactory as it
is shown below. In fact, missing experimental solubility data for
compounds similar to the target molecule indicates that it may
not belong to the applicability domain and limits significantly
the applicability of the method leading to worse prediction as
already observed in ref 11.

External Validation of Multimodel Method. Solubility
Challenge Test. Although the number of compounds in this
data set is small (26 compounds), this data set was chosen
because most of the models presented in the benchmarking
section of our study performed poorly. Seventeen compounds
satisfied the triple cutoff barrier of 0.7 similarity, which
represent 65% of the initial data. The obtained * of 0.90
suggests a good performance (illustrated in Figure 7A), as
compared to the best individual model QikProp-CI applied to
the same 17 compounds and achieving r* equal to 0.76.

Next, we tested the performance with the 26 compounds and
a cutoff of 0.5 in terms of similarity in the cases where no
sufficiently similar compounds were present in the reference
experimental data set (Figure 7B). In this case we observed an
important decrease of the performance. Indeed, the r* is equal
to 0.38 and outliers appear on the graph. This is due to the fact
that for some molecules the prediction is based on molecules
structurally different from the compound of interest. This
points out the importance of verifying if the compound of
interest belongs to the applicability domain of the used method.

S0IDiv150. In order to validate the multimodel protocol on a
larger number of compounds, the 150 compounds of
SolDiv150 were then tested. These 150 compounds were
removed temporarily from the reference data set. The results
are represented in Figure 7C. A significant improvement can be
observed in comparison with the individual models on this data
set (see Table 2). Indeed, the best performing model on the
SolDiv150 set, ACD, achieved #* of 0.79. After applying the
multimodel protocol we increased the r* to 0.84. ADMET
Predictor showed a ratio of correct prediction P1 of 0.59 on
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SolDiv150, while our protocol improved it to 0.63. The RMSE
is also slightly decreased since ACD obtained 0.82 and our
protocol 0.71. Overall, our protocol combining different models
for solubility prediction gave more accurate results than the
individual ones by enlarging the applicability domain. The most
important value of such an approach is the possibility to
determine which is the most appropriate model that can be
used on specific chemotypes. In fact, the applicability domain of
our method depends on the applicability domains of each
individual QSAR model. One can speculate that our approach
could also be employed to other available solubility models
while implementing larger in-house reference data sets.
Drugs. In order to assess the prediction performance on real
drugs, we repeated the evaluation analysis for extracted drugs
from PhysProp; we found 62 molecules that have 3 similar
compounds in the reference set. As can be seen from Table 4,
all models perform unsatisfactorily on this drug data set, in
terms of *, compared to the druglike compounds used. The
best performing approaches are MOE and the multimodel
protocol. Detailed information for solubility prediction of these
two models can be found in Table 1S in the Supporting
Information. However, MOE performs poorly on PhysProp,
both Solubility Challenge data sets and SolDiv1S0. As we
obtained the best results on the drugs’ data set with MOE, it
might be suggested drug molecules could be well represented in
its training set, which is apparently not the situation for the
other models. Regarding the multimodel protocol, for only 6
drugs the absolute error of logS > 1 log unit, and only for 1
drug the absolute error > 2 log units, which is still acceptable.

B CONCLUSION

We have presented a new protocol that improves solubility
prediction based on optimized structure similarity search, data
sets and the combination of several packages. Our multimodel
protocol allows selecting the most accurate model for a
compound of interest among several possible models. We
evaluated the performance of different fingerprints for aqueous
solubility prediction based on molecular structure similarity
through a Random Forest approach. Our analysis demonstrated
that the multimodel protocol significantly improves solubility
prediction on a large number of diverse compounds as
compared to the ten individual models thoroughly assessed
here. Yet, additional improvement is needed for real drugs. We
note that missing experimental solubility data for compounds
similar to the target compound/drug generally limit signifi-
cantly the applicability of the method leading to worse
prediction. Yet, these compounds are flagged and it is then
possible to measure experimentally solubility for these
molecules such as to maintain the high level of accuracy
prediction seen for the other compounds.
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Figure 1S, visualization of the developed multimodel protocol;
Figure 2S, performance of the multimodel protocol depending
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